
J.  Fluid Mech. (1996), vol. 323, p p .  173-200 
Copyright @ 1996 Cambridge University Press 

173 

Lateral vorticity measurements in 
a turbulent wake 
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The accurate measurement of vorticity has proven difficult because of the difficulty of 
estimating spatial derivatives of velocity fluctuations reliably. A method is proposed 
for correcting the lateral vorticity spectrum measured using a four-wire probe. The 
attenuation of the measured spectrum increases as the wavenumber increases but 
does not vanish when the wavenumber is zero. Although the correction procedure 
assumes local isotropy, the major contributor to the high-wavenumber part of the 
vorticity spectrum is the streamwise derivative of the lateral velocity fluctuation, and 
the correction of this latter quantity does not depend on local isotropy. Satisfactory 
support for local isotropy is provided by the high-wavenumber parts of the velocity, 
velocity derivative and vorticity spectra measured on the centreline of a turbulent 
wake. Second- and fourth-order moments of vorticity show departures from local 
isotropy but the degree of departure seems unaffected by the turbulence Reynolds 
number Rl. The vorticity probability density function is approximately exponential 
and has tails which stretch out to larger amplitudes as RA increases. The vorticity 
flatness factor, which is appreciably larger than the flatness factor of the streamwise 
velocity derivative, also increases with Rl. When Ri is sufficiently large for velocity 
structure functions to indicate a r2 /3  inertial range, two-point longitudinal correlations 
of lateral vorticity fluctuations give encouraging support for the theoretical r-4/3 
behaviour. 

1. Introduction 
Vorticity, or the measure of rotation of a fluid element, is an important defining 

characteristic of turbulence. It is not therefore surprising that there have been a 
number of attempts, using various methods, to measure it (see, for example, Corrsin 
& Kistler 1955; Foss 1979; Van Atta 1979; Willmarth 1979; Wallace 1986; Foss 
& Wallace 1989). Measurements of either one, two or, in a few instances, all three 
components of the vorticity vector coi (= e i j k U k , j ,  where ei,k is the alternating tensor 
and UkJ = auk/axj;  standard tensor notation applies) have been reported in different 
flows. Earlier measurements of 01, using a four-sensor hot-wire probe (Kovasznay 
1954) were made in a rough-wall turbulent boundary layer (Corrsin & Kistler 1955). 
Later, a modified Kovasznay probe (Kastrinakis, Eckelmann & Willmarth 1979) was 
used for o1 measurements in a turbulent boundary layer (Wallace & Vukoslavcevic 
1982) and a fully developed turbulent channel flow (Kastrinakis & Eckelmann 1983). 
More recently, this type of probe was used for w1 measurements in laboratory-grid, 
boundary layer and wake flows as well as the atmospheric surface layer (Fan 1991). 
Statistics of all three components of oi have been obtained with a nine-sensor hot- 
wire probe in a mixing layer (Baht ,  Wallace & Vukoslavcevic 1989) and a boundary 



174 R. A. Antonia, I: Zhu and H .  S. Shaji 

layer (Baht ,  Wallace & Vukoslavcevic 1991), a twelve-sensor hot-wire probe in grid 
and boundary layer flows (Tsinober, Kit & Dracos 1992) and the intermediate wake 
of a circular cylinder (Marasli, Nguyen & Wallace 1993) and a twenty-sensor hot-wire 
probe (Lemonis 1995) in grid and boundary layer flows. 

As well as being an obvious candidate for providing information on the vortical 
flow (e.g. through two-point vorticity correlations or conditional velocity-vorticity 
correlations: Wallace 1986; Ong 1992; Rajagopalan & Antonia 1993), vorticity data 
also allow properties of the small-scale structure of turbulence to be studied. Spectra 
of the mean-square vorticity or enstrophy (is = im) contain relatively higher 
wavenumber energy than the velocity or turbulent kinetic energy spectra (Antonia, 
Shah & Browne 1988b; B a h t  et al. 1991; evidence for this will also be presented 
later in this paper). Naturally, the separation between the peaks of these two spectra 
increases with the Reynolds number. 

Corrsin & Kistler (1955) pointed out that vorticity-dominated phenomena must 
be associated with the fine structure of the turbulence. This association raises the 
question of how closely the statistics of mi conform with local isotropy. It also 
raises the issue of how these statistics depend on the turbulence Reynolds number RA 

(= ut A / v ,  where u1 is the velocity fluctuation in the x1 direction, A is the Taylor 

microscale u: / u : , ~  and v is the kinematic viscosity of the fluid). Although several 
studies have presented results of vorticity statistics (e.g. Meneveau et al. 1990; Fan 
1991; Marasli et al. 1993; Mi & Antonia 1996), progress on the previous two questions 
has been slow, primarily because of the difficulty of measuring the high-wavenumber 
part of the vorticity spectrum reliably. When hot-wire anemometry is used, the 
measurement of wi invariably involves the use of multiple hot wires so that the effect 
of the spatial resolution of the probe needs to be taken into account. Several studies 
have examined the effect of spatial resolution on the measurement of vorticity or its 
components (e.g. Wyngaard 1968,1969; Antonia, Zhu & Kim 1993; Zhu, Antonia & 
Kim 1993; Zhu & Antonia 1995a,b; see also the review by Wallace & Foss 1995). 
Although Wyngaard (1969) has analysed the spatial resolution of the Kovasznay-type 
o1 probe, no corresponding analysis is available for o2 and o3 probes. 

The first objective of this paper is to quantify the effect of spatial resolution 
on the measurement of wi (i = 2, 3) using a relatively simple probe configuration. 
A procedure for correcting the high-wavenumber part of the vorticity spectrum is 
developed and applied to the data. This methodology is important since it leads 
to corrected vorticity spectra and, after integration, corrected vorticity variances. 
Indeed, the second aim of the paper is to compare the statistics of vorticity with local 
isotropy and examine the dependence of these statistics on the turbulence Reynolds 
number. A consequence of local isotropy is the r-'I3 behaviour of two-point vorticity 
correlations, when the separation falls in the inertial range. Such a behaviour has not 
previously been experimentally verified. The data have been collected in the same flow 
to avoid the possibility that different flows may have different levels of (large scale) 
anisotropy which could, in turn, affect the small-scale statistics. The flow chosen for 
the present work is the turbulent wake of a circular cylinder. There were two main 
reasons for this choice. First, the turbulence level is relatively low (typically less than 
6 - 7%), justifying the use of Taylor's hypothesis. Secondly, the magnitude of the 
Kolmogorov length scale is sufficiently large (typically 0.2 - 0.4 mm) to allow spatial 
resolution effects to be studied. The largest value (E 260) for RA is sufficient for an 
inertial range to be observed. 

The spatial resolution of the vorticity probe is considered in $2. Some of the 
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consequences of local isotropy are presented in $3, while $4 gives details of the flow 
and the instrumentation used. Vorticity statistics are compared with local isotropy 
in $5. The Reynolds number dependence of the statistics is discussed in $6. In 
$7, we provide some evidence for the inertial-range behaviour of two-point vorticity 
correlations. In $8, the present results are compared with those obtained in other 
flows. 

2. Correction procedure for lateral vorticity components 
The effect that too large a separation between parallel hot wires can have on 

the high-wavenumber part of the spatial derivative spectrum or has been 
quantified in the literature (e.g. Wyngaard 1969; Antonia, Browne & Chambers 1984; 
Antonia et al. 1993; Ewing, Hussein & George 1995) both analytically and experi- 
mentally. Wyngaard's analysis (1968,1969) provides a useful method of correcting for 
the high-wavenumber spectral attenuation. With slight modifications (e.g. Antonia & 
Mi, 1993a), the approach has been tested with DNS data for u1,2 and other spatial 
velocity derivatives (Antonia et al. 1993; Antonia, Zhu & Kim 1994; Zhu & Antonia 
1995a). It can, in principle, be applied to any configuration, including the relatively 
complicated hot-wire arrangements used in vorticity probes. Wyngaard (1969) pre- 
sented analyses of the spatial resolution of arrays for measuring velocity derivatives 
and of the Kovasznay w1 probe. A correction procedure for 0 3  is outlined below (a 
similar treatment could be developed for 02). By definition, 

0 3  = U2,l - u1,2 . (2.1) 

The variance of 0 3  is given by 

The accuracy of estimating 2 will depend on the accuracy with which the terms q, 
u:,2 and u1,2u2,1 can be measured. Alternatively, the accuracy of 4w3, the spectrum of 
0 3 ,  will depend on that of 4u2,1, &,,, and of the cospectrum cOulju2,1. 

Multiple wires, necessarily displaced from one another in space, are used in a 
vorticity probe. Consequently, the velocity components are measured at slightly 
different spatial locations. This, in addition to the finite wire lengths, means that it 
is important to distinguish between measured and true values of velocities, velocity 
derivatives and vorticities so as to account for the finite spatial resolution of the 
probe (e.g. Silverman 1968; Wyngaard 1969). Measured quantities will be denoted by 
a superscript m; no superscripts will be used when referring to the true values. 

- 

The quantities u i l  and uy2 can, in general, be expressed as follows: 

m 

uT2 = Lm e'k'"dZy2, (2.4) 

where dZ21 and dZ12 are the Fourier-Stieltjes components of uZ1 and u1,2 respectively, 
k is the wavenumber vector with magnitude k G (k:+k,2+k$1/2. The measured spectra 
of u2,1, u1,2 and their cospectrum may be expressed as 
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a;],*,*,,(k)dk = dZ;;(dZ?l)+ > (2.7) 

4 U Z . I W  = k:422(k), (2.8) 

4 U I , Z ( ~ )  = k22411(k), (2.9) 

where the dagger denotes a complex conjugate. The 'true' spectra and cospectra may 
be written, in general, as 

a U 1 , 2 U 2 , * ( k )  = klk2412(k) . 
Equation (2.10) follows from the more general expression 

(2.10) 

&u,,,,,u,,,(k) = kmkn+ij(k) > 

where &(k) is the energy spectrum tensor. For isotropic turbulence (Batchelor 1953, 
P. 4917 

(2.11) 

where E(k) is the three-dimensional energy spectrum. 

$rl,2(kl) and cospectrum Co~l,zu2,, (kl) and their true values 
With this simplification, the ratios of the measured one-dimensional spectra 4;,l (kl), 

(2.12) 

(2.13) 

can be estimated for any value of kl by numerically evaluating the double integrals 
in (2.12)-(2.14). The ratio 4&(k1)/&3(kl) can also be estimated since 

4W(k1) = 4 U 2 , 1 ( ~ 1 )  + 4 U i , z ( k 1 )  - 2 a U ~ , z U z , ~ ( k l )  * (2.15) 

Before the numerator in (2.12)-(2.14) can be estimated, the coefficients dZT1 and 
dZy2 in (2.5)-(2.7) need to be expressed in terms of the geometrical parameters (e.g. 
separations between the hot wires, their effective lengths and inclinations) of the 
particular probe used. 

Different probe configurations have been used in the literature (e.g. Foss 1979; 
Haw, Foss & Foss 1988; Klewicki & Falco 1990; Antonia & Rajagopalan 1990; 
Rajagopalan & Antonia 1993). Here we focus on one probe configuration (figure 
la). The probe consists of one X-wire which straddles parallel single hot wires; this 
configuration was used by Haw et a2. (1988), Antonia & Rajagopalan (1990) and 
Rajagopalan & Antonia (1993). The single wires are used to infer the streamwise 
component of velocity, i.e. it is assumed that the single wires respond only to 
Ul and not to ( U ;  + U;)'/2. Expressions for $;,z., +;,!, G~,2u2,1 and 4g3 in terms 
of the geometrical parameters of the probe are given in the Appendix. The ratio 
4z3(k)/&3(k1) as well as the ratios in (2.12)-(2.14) are shown in figure 2. The 
streamwise separation Ax; = - U I A t / q  which corresponds to the time At between 
samples (At  = f;', where f s  is the sampling frequency of the data acquisition; u1 is 

- 
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FIGURE 1. (a) Probe geometry used for the measurement of w2 or 04.  ( b )  Definition sketch of the 
flow and coordinate system. 
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FIGURE 2. Spectral correction ratios for coy and its components. 
AX; = 2, AX; = 4, AX; = 2, 1' = 2, j = 45". 

the local mean streamwise velocity) was equal to 2. The values of Ax; (the distance 
between the parallel hot wires), Ax; (the spanwise distance between the wires of 
X-probe), the wire length 1* and the effective angle p (or n - p )  of the X-wires were 
4, 2, 2 and 45" respectively. (The asterisk denotes normalization by the Kolmogorov 
length scale q E and velocity scale UK = v1/4F'/4 where v is the kinematic 
viscosity of the fluid and F is the mean turbulent energy dissipation rate.) 

Notwithstanding the relatively small values chosen for Ax;, Ax; and Ax;,  figure 
2 shows that the spectral corrections that need to be applied to the measured o3 
spectrum are not negligible. As expected, the magnitude of the correction increases as 
k;  approaches unity. Fork; = 1, the attenuation in 4E3 is about 40%. The attenuation 
is not negligible at small wavenumbers, even at k;  = 0 where it is of order 10%. 
This behaviour was also noted by Wyngaard & Pao (1972). The finite attenuation at 
small wavenumbers is caused by the attenuation of and Cou1,2u2,, ; the formation 
of the ratio @l,2(k~)/4ul,2(k~) requires integration over all values of k2 and k3 (for 
convenience, the wire length effect has been ignored and only the separation Ax2 
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between the parallel hot wires is included): 

R. A. Antonia, K Zhu and H .  S. Shaji 

The ratio will remain less than 1 for all values of kl.  In other words, the spectrum of 
vorticity is attenuated at all wavenumbers. Wyngaard & Pa0 attributed this to the fact 
that, unlike the three-dimensional velocity spectrum, the ‘effective’ three-dimensional 
vorticity spectrum has a positive slope in the inertial range; this means that small 
scales are likely to contribute significantly at all kl. 

An appropriate way of testing the validity of the correction technique would be to 
measure 2 with different values of Ax;, apply the correction scheme and compare 
the results. Since changing the relative configurations of the wires of the present 
probe without breaking the wires is extremely tedious, an alternative test would be 
to apply the scheme to individual components of 3. In a previous investigation 
(Zhu et al. 1993), the correction scheme was tested for G, as measured using two 
parallel ~ hot wires in a fully developed turbulent channel flow. The corrected values 
of u : , ~  compared favourably with estimates obtained from the correlation method 

and also with DNS data for in the same flow (and Reynolds number). The 
correction procedure was also applied to DNS data for u1,2, evaluated with a central 
finite difference scheme similar to that used in the experiment (Antonia et al. 1993); 
other spatial velocity derivatives were considered in Antonia et al. (1994). The results 
provide important corroboration of the procedure, at least when local isotropy is 
satisfied. 

While the assumption of local isotropy is necessary for the practical implementation 
of the procedure, it is important to underline that the correction of qL2,, (or indeed 
the spectrum of any streamwise derivative) does not require this assumption. The 
ratio 4~z,l(kd/4uz,l(W reduces to 

(2.17) 

The formation of this ratio requires neither the assumption of isotropy nor any 
knowledge of E(k). As shown in figure 2, the ratio in (2.17) approaches 1 when 
k; + 0. The correction procedure for was tested using the data from two X-wire 
probes in a wake flow (Zhu & Antonia 1995a; Mi & Antonia 1996). After correction, 
the &, distributions for different Ax; values were indistinguishable from each other, 
thus validating the correction scheme for &,,,. The procedure has not been checked 

for cOu1,2uz,, for the present probe geometry. Since its contribution to (or z) is 
relatively small (this can be seen in $9, it seems natural to expect that any error in 
correcting cOLfl,zuz,l, will only have a small effect on 4w3 (or 0:). Further validation 
of the correction scheme was obtained by applying it to two X-wires separated in a 
lateral direction (Zhu & Antonia 1995a; Mi & Antonia 1996). Measurements in the 
wake flow with different separations between the X-wires yielded essentially the same 
value of 3, after the application of the correction (Mi & Antonia 1996). 

Figure 2 indicates that 4ul,z and cOul,zuz,l are much more attenuated than 4uz,1; 
although this is important when correcting the low-wavenumber region of 4w3, it will 
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be shown in 95 that &, provides the major contribution to the high-wavenumber 
part of &,. In this context, the correction that is applied to the measured 0 3  (or 
0 2 )  spectrum should not invalidate the comparison of the high-wavenumber part of 
the corrected spectrum with isotropy; isotropic relations for the vorticity spectra are 
given in the following section. 

3. Local isotropy 
Since velocity derivatives give more weight to the high-wavenumber part of the 

spectrum than velocity fluctuations (Corrsin & Kistier 1955; Antonia, Anselmet & 
Chambers 1986; B a h t  et al. 1991; Van Atta 1991), mi should in principle provide a 
better test for local isotropy than ui. (The DNS data for vorticity and velocity spectra 
tend to support this expectation, Antonia & Kim 1994.) In this section, we consider 
the consequences of isotropy on the moments and spectra of coi at one point in space. 
(Two-point correlations are considered in 97.) 

Second-order moments of ai are equal: 
- - -  - 

(3.1) 2 -  2 0 1  - 0 2  = 0; = ~U:,J , 

a result which follows from the isotropic relation (e.g. Antonia, Browne & Shah 
1988a) 

Ui, jUk,m = iu1 ,1 (46 ik6 jm - 6 j j 6 k m  - 6 i m 6 j k )  . (3.2) 

Relations for the components of and cL)32 also follow from (3.2): 

(3.3) 

Odd-order moments of coi should be zero by virtue of the symmetry of vorticity prob- 
ability density function p ( o i ) ;  the isotropic form of the sixth-order tensor (equation 
(A4) in Champagne 1978) can be shown to satisfy 0: = 0: = = 0. Consequently, 

the skewnesses S,, (e.g. S,, = 3/33'2) should all be zero, i.e. 

s,, = s,, = s,, = 0 .  (3.4) 

The isotropic relation between the components of 3 can be obtained from the 
eighth-order velocity gradient correlation function. An expression for this function 
was obtained by Phan-Thien & Antonia (1994) after first deriving a recursive rela- 
tion for the unit isotropic tensor of arbitrary even order and using symmetry and 
incompressibility to reduce it to 
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Siggia (1981) expressed the fourth-order velocity derivative tensor in isotropic turbu- 
lence in terms of four invariants; these invariants may be expressed in terms of 
only. One consequence of (3.5) is 

- - -  - 
0;‘ = 0124 = 0: = 25u;‘,, . (3.6) 

- 
It follows from (3.1) and (3.6) that the flatness factors Fmi (e.g. F,, = wf /3 ’ )  are all 
equal, with the same magnitude as the flatness factor of U I , ~ ,  namely 

(3.7) F = F  = F  = F  
0 1  0 2  0 3  Ul.1 * 

The flatness factors of the main components of 0 2  and 0 3  are also equal to Ful,l, 
namely 

FU2,1 = Fu3,1 = Fu1,2 = FUl,3 = F U , , *  (3.8) 
Because of the solenoidality of wi and ui (Batchelor 1953; Monin & Yaglom 1975; 

Antonia & Kim 1994)’ isotropic relations between vorticity spectra have the same 
form as isotropic relations between velocity spectra, namely 

(3.10) 

The spectra &,i(kl) can be readily written in terms of 4ul or (e.g. Van Atta 
1991; Kim & Antonia 1993): 

The components of +,,(kl)  and $, , (kl)  may be written as follows: 

$ U I , Z ( ~ ~ )  = 4 U l , 3 ( k 1 )  = 1; k $ U 1 , l ( k ) d k ?  

(3.11) 

(3.12) 

(3.13) 

~ u 1 , z u 2 , , ( k l )  = a 4 1 , 3 U 3 . 1 ( k l )  = - ; 4 u I J ( k l )  . (3.15) 
Equation (3.15) is obtained by integrating the isotropic form of the cospectrum, 
namely (2.10) with 412(k)  given by (2.11), over all values of k2 and k3. 

4. Experimental details and conditions 
Measurements were made in the working section (350 mm x 350 mm, 2.4 m long) 

of an open return low-turbulence wind tunnel. The bottom wall of the working 
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urn UO d c  RA 1 V f c  f K  fs AX3IV Ax2/V 
(m SKI) (m SKI) (mm) (mm) (mm) (kHz) (kHz) (kHz) 

3.6 0.35 12.7 60 5.6 0.37 1.6 1.41 3.33 2.43 4.05 
5.0 0.58 25 120 6.6 0.32 2.5 2.30 5.0 2.5 4.70 

10.0 0.76 25 190 5.1 0.18 8.0 7.7 15.15 4.4 6.1 
14.7 1.35 25 260 4.7 0.14 8.0 15.15 15.15 5.7 7.8 

TABLE 1. Table 1 Summary of Experimental Conditions at x l / d ,  = 70. 

section was tilted to achieve a zero streamwise pressure gradient. A definition sketch 
of the flow and coordinate system is shown in figure l(b). The free-stream velocity 
U ,  was varied from 3.6 to 14.7 ms-' and the Reynolds number & (z U,,,d,/v, where 
d, is the diameter of the cylinder; d, = 12.7 mm for U,  = 3.6 m ssl and 25 mm 
for other speeds) was in the range 3000 - 24500. Measurements were made in the 
intermediate wake xl/d, = 70, where x1 is the streamwise distance measured from the 
cylinder axis. Ideally, all measurements should have been made in the self-preserving 
region of the flow. The present choice (xl/d, = 70) was a compromise because of 
the need to use relatively large cylinder diameters to obtain a moderately high Rl. 
For the largest diameter used here (d, = 25 mm), the length of the working section 
precluded the use of distances much greater than 70d,. 

The mean velocity defect on the wake centreline, denoted by UO, and centreline 
values of the Kolmogorov length scale q (= v ~ / ~ / T ' / ~ ) ,  where T was estimated by 
assuming isotropy, namely F = 15vu;,, are given in table 1. Centreline values of 

I. (Taylor's hypothesis u1,1 = -U, ~ 1 , ~  was used) and the associated values of the 
turbulence Reynolds number Rn are also given in table 1. The use of isotropic values 
T results in only small errors in q. The data of Browne, Antonia & Shah (1987) 
suggest that T,,,/T is about 0.90 on the wake centreline; the resulting maximum error 
in y would be of order 1 or 2%. 

When the present probe measured w3 (figure la) two parallel wires were aligned 
in the x3-direction but separated in the x2-direction and the X-wire was in the 
(xl,x2)-plane. The separations Ax; and Ax; were adjusted (table 1) at each Reynolds 
number in order to (i) minimize the attenuation due to too large a separation and 
(ii) avoid noise contamination and the possibility of probe interference due to too 
small a separation. For the choice of the separation Ax;, we relied mainly on a 
separate experiment in which the separation between two single hot wires, parallel to 
the x3-direction, was varied in the range 0.2 mm to 5 mm. This variation allowed 

estimates of u;,~ by the finite difference technique (Antonia et al. 1984; Antonia 
& Mi 1993a; Zhu et al. 1993) and the correlation method (Taylor 1935; Rose 1966; 
Verollet 1972; Browne et al. 1987). The separation Ax; was greater than 2 (at each 
Reynolds number); this choice is consistent with the suggestion in Zhu & Antonia 
(19956). For the measurement of 02 ,  the probe was rotated through 90" so that the 
X-wires were in the ( ~ 1 , ~ 3 )  plane. 2.5 pm diameter Wollaston (Pt-10% Rh) hot wires 
were used for the probe. The wires were etched to a length of about 0.5 mm. 

Thin prongs (the tip diameter was about 0.1 mm) were used to minimize the flow 
blockage. The included angle for X-wires was about 100" in order to minimize any 
adverse effects associated with large velocity-vector cone angles (e.g. Perry, Lim & 
Henbest 1987; Browne, Antonia & Chua 1989). No correction to the X-wires was 
made for the possible effect of ?71,2 since this mean velocity gradient is zero on 

- 
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the centreline. Taylor's hypothesis is approximately satisfied (Mi & Antonia 1996); 
therefore, corrections for the influence of a fluctuating velocity field were not made. 
In order to minimize the effect of wind-tunnel induced vibration, the hot-wire probes 
were mounted in isolation from the tunnel. 

The hot wires were operated with in-house constant-temperature circuits at an 
overheat ratio of 0.5. Output voltages from the anemometers were passed through 
buck and gain circuits and low-pass filtered at a cut-off frequency fc, typically in the 
range 1.6 to 8 kHz. A few comments should be made on the choice of fc since vorticity 
is a small-scale characteristic. The selection of fc is by necessity a compromise between 
the need to use as high a value as possible while minimizing the effect of noise. Too 
high a filter setting would result in the signal being contaminated by an excessive 
amount of electronic noise while too low a setting would cause the high-frequency 
part of the spectrum to be attenuated. In this experiment, the procedure used to select 
f c  was essentially that outlined in Antonia, Satyaprakash & Hussain (1982). All four 
anemometer signals were first differentiated using analogue circuits and the spectra 
of the differentiator output signals were viewed on the screen of a real time spectrum 
analyser (HP3582A). It was relatively easy to identify a frequency, fm ln  say, in the 
relatively high-frequency part of the spectrum where the spectral density started to 
level off before increasing at higher frequencies. This behaviour was associated with 
the contamination due to noise since the outputs from the differentiators exhibited a 
similar trend when the hot wires were disconnected and the inputs to the constant- 
temperature circuits were shorted. Since one would expect some noise contamination 
for frequencies smaller than f m l n ,  fc (< f m l n )  was selected where the spectral density 
was 2-3 dB higher than that at fmin.  

For U ,  = 3.6 m s-l and Urn = 5 m s-l, f c  (table 1) was equal to 1.6 kHz and 
2.5 kHz respectively. These values are about 13% and 9% higher than the values 
of f K  = V1/2.nq (table 1). For U,  = 10 m s-', fc was slightly larger than f ~ .  
For U ,  = 14.7 m s-l, f c  was equal to 8 kHz. This choice was dictated by the 
maximum sampling frequency of the data acquisition board which was about 16 
kHz per channel (when four channels are used). Although data were recorded for 
U,  = 14.7 m s-l, the records were used only to examine inertial-range statistics; 
dissipation-range statistics, which would have been affected by the failure to resolve 
the high-frequency content up to fK, have not been included in 995 and 6. 

The choice fc 2: f K  is consistent with the suggestions of Kuo & Corrsin (1971), 
Frenkiel & Klebanoff (1975), Champagne (1978) and Frenkiel, Klebanoff & Huang 
(1979) in connection with the measurement of small-scale statistics. Antonia et al. 
(1982) found that the use of fc N f~ underestimated S,,,, and F,,,, by about 10% 
compared to the values obtained when fc N 1.75f~ while Browne et al. (1987) reported 
that their measured values of S,,,! and F,,, were approximately constant for f c  2 fK. 
In order to examine the appropriateness of the present choice of fc, we measured F, 
( R  = u ~ , ~ ,  q2,  u2,1 and coj) using a value of f c  which is 12% smaller than that listed 
in table 1 for U1 = 10 m s-'. The measured values were within 5% of those obtained 
using fc = 8 kHz, indicating that the selection of f c  2: f~ should be satisfactory for 
the present investigation. 

The filtered signals were sampled at fs = 2fc (table 1) into a personal computer 
(NEC 386) using a 12-bit A/D converter (RC Electronics). Record durations of 
about 2 min were used. Yaw and velocity calibrations were carried out on the PC 
but all other processing of the data was done on a VAX 8550 computer. 
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FIGURE 3.  Measured (uncorrected) spectra of w3 and of its components (& = 60). 

5. Measured vorticity spectra and spectral checks of local isotropy 
We underlined in 92 that the correction to the vorticity spectrum does not hinge 

critically on the assumption of isotropy. Figure 3 shows the contributions to &3 

from the three constituents of 03. The spectra are shown up to the data acquisition 
frequency. The slight upturning of the spectra around k;  N 1.0 is due to the electronic 
noise. The largest contribution is made by &,,, at k;  1: 0.22; the peak values of $u,,, 

and -2cOuI,2u1,2 occur at smaller values of k ; .  Whereas &,,, is more dominant at lower 
wavenumbers ( k ;  5 O.l), &,,, dominates at high wavenumbers (k ;  2 0.2), almost one 
decade larger than the other two components. When integrated over all values of 
k ; ,  &, and @u2,, make approximately equal contributions (39% and 41%) to 3. 
Although the spectra shown in figure 3 are uncorrected, the conclusions drawn here 
also apply to the corrected spectra. 

There are a number of tests for checking whether the high-wavenumber part of 
the spectrum conforms with isotropy. For example, the 241242 cospectrum should be 
zero; figure 4 indicates that this is the case when k;  2 0.08 for Rn = 60 and k;  2 0.02 
for Rn = 190. The measured u2 spectrum in figure 5 compares favourably with the 
calculation based on the measured u1 spectrum from the single hot wire via (3.9). 
The agreement is always better than 20% in the range k; 2 0.08. The anisotropy 
is apparent at lower wavenumbers. The mild peak at k;  2: 0.02 is not associated 
with the vortex shedding; it reflects the onset of the organized large-scale motion 
(k ;  = 0.02 corresponds to a ratio LC/& of about 0.23, which is the value previously 
established by Antonia, Browne & Fulachier 1987; L, is the wake half-width and 1, 
is the average streamwise wavelength of the large-scale motion) in the far wake. The 
u3 spectrum, also shown in figure 5,  is indistinguishable from the u2 spectrum, at least 
in the range k;  2 0.05. While this equality is consistent with local isotropy, namely 
(3.9), it is arguably not a stringent requirement since the assumption of axisymmetry 
would also require that 4u2 and &3 are equal, with XI being the preferred direction. 
In this context, one would also expect &, and &3 to be equal, as will be shown later 
in this section. 

In testing hypotheses for the small-scale structure of turbulence, it is important to 
select quantities which are representative of the small-scale motion (Antonia & Kim 
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FIGURE 5. Measured u2, u3 spectra and comparison with isotropy (& = 60). 

1994). Here we use the corrected spectra of wi (i = 2,3) and ubj to test local isotropy. 
The spectra of wi and its components are compared with isotropic calculations in 
figures 6 and 7. The present corrected spectra of wi agree with corrected spectra 
(not shown here) obtained with a two-X-wire probe in the same flow (xl/d, = 70, 
Ri. = 60); this further supports the claim made in $2 with regard to the validity 
of the correction procedure. The calculations were done using (3.12)-(3.15) and the 
measured ul,l spectrum (&,,, was determined by first differentiating the time series 
of u l ;  this procedure results in a better signal-to-noise ratio for &,,, than if the 
latter quantity is formed by multiplying & with k i ) .  Figure 6 indicates that &*,, 
and &, are almost identical and agree well with calculation (equation (3.14)) when 
k ;  2 0.2. Cou1,Ju3,1 and Gu,,2u2,1 also agree with the calculation (equation (3.15)) when 
0.02 d kr < 0.4. However, for k ;  2 0.4, they fall below the calculation. 
&, and 4u,,, (figure 7) are also identical and follow the calculation closely even 
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FIGURE 6. Corrected spectra of vorticity components and comparison with isotropy (RA = 60). 

FIGURE 7. Corrected spectra of vorticity and its components and comparison with isotropy 
(Rn = 60). 

at low wavenumbers. Since the spectra of the components of 0 2  and w3 are (nearly) 
identical, &,2 and &,,3 should also be the same. This is indeed the case: figure 7 shows 
that &2 and &3 are practically indistinguishable from each other and in satisfactory 
agreement with the isotropic calculations via (3.12). 

The results presented in this section were obtained at Rl = 60, too small for an 
inertial range to exist and, arguably, for local isotropy to be valid. Yet, most of the 
statistics presented seem to conform closely with isotropy. This trend is consistent with 
Antonia & Kim’s (1994) conclusion, based on direct numerical simulations of various 
turbulent flows, that isotropy is satisfied independently of the quantity considered or 
Rl provided k ;  is sufficiently large and the Kolmogorov-normalized mean strain rate 
is sufficiently small. The isotropic checks (not shown here) for higher RA indicate that 
the level of agreement with local isotropy is about the same as for low-RA data; the 
range of agreement, however, extends to lower wavenumbers as Ri increases. 
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6. Dependence on & 
Statistics of u1,1 and their dependence on R, have been of interest in the context 

of small-scale intermittency (e.g. Van Atta & Antonia 1980). Assuming T - u ; , ~  to be 
an appropriate replacement for e, statistical properties of e have been inferred from 
those of T. Since vorticity is closely connected with fine-scale turbulence, it seems 
appropriate to investigate the R, dependence of the statistics of mi. 

Figure 8 shows the ratios of 0 2 2 ,  m$ and their components to 6 for three values 
of RA (60, 120 and 190). While the measured ratio m : / ~ ; , ~  is close to the isotropic 
value of 5,  equation (3.1), the corrected ratio is greater than the isotropic value. 
The maximum deviation (R, = 120) is about 12%. This discrepancy appears to be 
associated with the deviation (1: 20%) of u ~ , ~ / u : , ~  and U $ / U ; , ~  from the isotropic 
value of 2 (equation (3.3)). The other quantities agree with isotropy to within 
+6%. Note that these ratios are determined with relatively high accuracy since 
the correction that needs to be applied to u&, u ; , ~  and is small and does not 
depend on local isotropy. Also, estimates of these three variances obtained from the 
correlation method agreed to +1% with those estimated from the finite difference 

_ _  
-- 

_ _  - _  

-- __ 
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FIGURE 9. Corrected spectra of w2 and w3. 

method. Figure 8 indicates that local isotropy is only approximately satisfied. The 
slight departure from isotropy is arguably due to the fact that the measurements 
were made just beyond the intermediate region of the wake where the near-wake 
organized (and anisotropic) large-scale motion may still be exerting an influence on 
the statistics. In this context, the variances of vorticity and its components, which 
weight all wavenumbers, may not be a good indicator of the isotropy of the fine 
structure. 

According to figure 9, both +& and +,& show a reasonable collapse at high 
wavenumbers for different Rk. The collapse appears to be consistent with Kol- 
mogorov's similarity hypothesis (Kolmogorov, 1941). At low wavenumbers, however, 
the magnitudes of +& and, more especially, +k3 increase slightly with Rl. This be- 
haviour is not surprising in that there is no a priori reason why Kolmogorov scaling 
should be appropriate at low wavenumbers. The integrals under the spectra in figure 
9 yield oi2 or mi2. The magnitudes of these two quantities increase only marginally 

with RA: in the case of oi2, the increase is from 0.38 at Rl = 60 to 0.39 at Rn = 190. 
Note that for homogeneous turbulence E. = v2, so that ot2 = 1. With the additional 
assumption of isotropy, = o2 = mi2  = 1/3. The present values of oi2 and 0;' 

- -  

- 

- 

~ - -  ~ - 
.2 



188 R. A .  Antonia, I: Zhu and H.  S. Shaji 

P (5J 

100 

lo-' 

10-2 

10-3 

10-4 

10-5 
-15 -10 -5 0 5 10 15 

t3 = Co3/o; 

FIGURE 10. Probability density functions of w2 and w3. Prime denotes r.m.s. of the quantity. 
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are somewhat larger than 1/3, possibly reflecting small departures from homogeneity 
and isotropy at x l / d ,  = 70. It should also be recalled that the isotropic value of F has 
been used for normalization: the use of the total dissipation - (which is greater than 
Tiso) would result in a reduction of the present values of w;* and A comment 
on the scaling of 2 in the self-preserving far wake seems appropriate here. In this 
region of the flow, one expects T to scale on L, and U,, i.e. TL,/Ui = f(y/L,) or, 
provided homogeneity is a reasonable approximation, s L : /  U: = Rif(y/L,). The 
vorticity variance should therefore increase linearly with Rl, when normalized by the 
characteristic wake scales. Data collected by Mi & Antonia (1994) for the far wake 
support this result. 

The dependence on Rl can also be quantified through the probability density 
function of o and its components. Figures 10(a) and 10(b) plot the p.d.f.s of 0 2  

and 03, respectively. At RA = 60, the p.d.f.s assume a nearly exponential form. For 
small r i  (= oi/oi), there is little difference in the p.d.f.s for different Rl. For large [i, 

however, evolve with Rl, a double exponential behaviour becoming more evident as 
Rl increases. Note that we do not know how to correct p ( c i )  for the effect of spatial 
resolution. 

- 
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At x l / d ,  = 70, p(C2) and p(C3)  are virtually identical, irrespective of RA. This 
is consistent with the previously noted equality (equation (3.1)) between second- 
order moments of 0 2  and w3. The approximate symmetry of these p.d.f.s about 
the origin implies that all odd-order moments should be very close to zero. Indeed, 
all the skewnesses (not shown) for the two components of vorticity are nearly zero. 
However, a zero skewness does not necessarily validate local isotropy since the flow 
is symmetrical about the centreline. The flatness factors of 0 2  and 0 3 ,  i.e. F,, 
and F,,, are nearly the same (figure 11). Figure 11 also indicates that the flatness 
factor of vorticity and its components increases with RA, which is consistent with 
the previously observed behaviour of ~ ( ( 2 )  and p(C3). The magnitudes of F,, and 
F,, are slightly higher than the flatness factors of the components of 0 2  and w3 but 
noticeably larger than the magnitude of Fu,,,. One could associate, albeit with some 
qualifications, the flatness factors of ui,j or mi with intermittency (e.g. Sreenivasan 
1995). Correspondingly, figure 11 implies that vorticity becomes more intermittent as 
K i  increases. It also shows that u1,1 is the least intermittent of the quantities, so that 
intermittency characteristics inferred from u1,1 are unlikely to apply exactly to other 
components of ui,j or vorticity. Since, for homogeneous and isotropic turbulence, 
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E = 3vw,2, the flatness factors of mi ( i  = 2,3) may be more representative of the 
dissipation field than those of u1,~. The difference between the magnitudes of F,, 
(or Fm3) and F,,, is significant and represents an appreciable departure from the 
isotropic relation (3.7). Note that the magnitudes of F,,, and F,, ,  are also greater 
than F,,,, , which contravenes relation (3.8). The departures from isotropy indicated by 
figure 11 reflect the anisotropy of both fourth-order and second-order moments; we 
emphasize that these moments weight the anisotropy of the larger scales of motion 
so that the results of figure 11 do not negate previous conclusions regarding the 
approximate isotropy at high wavenumbers. It should also be noted that, whereas 
corrected second-order moments of mi are attainable via the corrected spectrum, 
we do not know how to correct moments of order greater than 2. The reliability 
of 2 or, more generally, p(mi)  cannot therefore be guaranteed. However, if one 
normalizes the fourth-order moments by the corrected second-order moments, some 
compensation can be expected. The statistical convergence of 3 was verified for the 
present measurements since the product $ p ( o i )  was negligible at sufficiently large 
values of (mi(. 

- - 

7. Inertial-range behaviour 
For homogeneous turbulence, the vorticity correlation tensor B;(v) = o i ( x ) w j ( x  + v )  

is related to the velocity correlation tensor Bij(v) = ui (x)u j (x  + v )  through the Navier- 
Stokes equations (Batchelor 1953; Monin & Yaglom 1975) 

For isotropic turbulence, the dependence on the separation vector Y may be replaced 
by a dependence on the scalar r (the magnitude of v) .  In this case, B z ( r )  and Bi j ( r )  
are given by 

r . r .  
r2 B t ( r )  = (BFL - B:N) 'J + B" N N  6. .  l J  (7.2) 

respectively, where the subscripts LL and N N  refer to the longitudinal and lateral 
correlations respectively (the notation follows essentially that used in Monin & 
Yaglom). If f and g are the scalar longitudinal and lateral correlation functions, 
f = B11, g = B22 or B33, f" = BE,  g" = BZ or BE.  As noted in $3, vorticity 
and velocity are both solenoidal, i.e. dB;/drj  = 0 and d B i j / d r j  = 0. It follows that 
g" = f" +(r/2)f"' and g = f+(r/2)f', the prime denoting differentiation with respect 
to r .  Expressions for f" and g" can be obtained after substituting (7.3) into (7.1) 
(note that Bkk = f + 2g): 

In the inertial range (y << r << L ;  L is the integral length scale), the behaviours 
of f and g follow from the 'r2/3' dependence of the velocity structure functions 
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g = g(0) - $ ~ ~ 2 / 3 r 2 / 3  , (7.7) 
where f(O), which is equal to g(O), is the correlation at zero separation and C is the 
Kolmogorov constant. Substitution of (7.6) and (7.7) into (7.4) and (7.5) yields a 
dependence for f" and g": 

f" = +CF2/3r-4/3, (7.8) 

g" = gCF2/3r-4/3 . (7.9) 
Whereas (7.8) and (7.9) indicate that inertial-range power-law distributions should be 
observed in vorticity correlations, (7.6) and (7.7) suggest that a power-law behaviour 
should be seen only on the differences f (0)- f or f (0)-g rather than directly on f or g. 
Given that vorticity correlations are associated with small-scale motion, the condition 
of isotropy can be relaxed to that of local isotropy. To our knowledge, there have 
been no previous attempts to verify (7.8) or (7.9). A rP4I3 inertial-range behaviour for 

the second-order vorticity structure function, can be derived using dimensional 
arguments similar to those - used by Kolmogorov (1941) in obtaining a r2l3 inertial- 
range dependence for ( A u ) ~ .  Assuming that the vorticity increment Aco depends on r 
and in the inertial range, it can be shown that ( 8 0 ) ~  - F2/3r-4/3 or, alternatively, 
( A o * ) ~  - Y * - ~ / ~ .  Note however that this argument is erroneous since it leads to a 
r 4 I 3  behaviour for the second-order structure function and not the correlation; the 
present experimental data (see below) support a rP4I3 behaviour for the correlation 
only. 

The present data for the lateral correlation coefficient pw3 = co3(xI)co3(x1 + r ) / q  
are shown in figure 12 for Rn. = 260. This Reynolds number is sufficiently large 
for an inertial range to be observed in the second-order velocity structure function 
(Au1)2 = [u1(x1 + r )  - u1(x)I2. Although the sampling frequency is low compared with 
the Kolmogorov frequency, it should be appropriate for the present purpose. The 
values of r ( A u ; ) ~ ,  also shown in figure 12, are approximately constant over the 
range 30 5 r' 5 200; the plateau implies a value of C of about 2, in reasonable 
agreement with the bulk of laboratory and atmospheric data for this constant (Yaglom 
1981). In the inertial range, the agreement with (7.9) is reasonable. It should be noted 
that the pw3 data in figure 12 have been corrected for the effect of spatial averaging 
since they were obtained by inverse Fourier transforming the corrected co3 spectrum 
(however, the magnitude of the correction is small in the inertial range). The large 
scatter in the inertial-range data for pOg reflects the large uncertainty associated with 
the small magnitudes of the correlation. 

: -2 13- 

8. Comparison with other data 
It is of interest to compare the present vorticity statistics with those obtained in 

other flows. This comparison is important in terms of both further justifying the 
present data and exploring the RA dependence of vorticity statistics. 

Figure 13 compares the present p ( i 2 )  and ~ ( ( 3 )  distributions at Rl = 120 with p ( i 1 )  
obtained from a direct numerical simulation of fully developed turbulence by Kida 
& Murakami (1989) at RA = 128. The distributions are in good agreement for values 
of ii around zero. The present distributions tend however to spread to larger values 
of ii than for Kida & Murakami. The latter distribution is closely approximated by 
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FIGURE 12. Dependence of vorticity correlation coefficient and second-order velocity structure 
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a single exponential curve (as noted earlier, this is observed in the present data for 
RL = 60) whereas the present distributions exhibit a double exponential behaviour. 
Figure 14 indicates that the distribution of p(cl) measured by Fan (1991) in the wake 
of a circular cylinder at Ri = 300 differs significantly from the present distributions 
of ~ ( ( 3 )  at RL = 260. Fan’s data follow a Gaussian distribution over a central 
range 5 2.5 and an exponential distribution for larger lC1l. Fan’s grid turbulence 
measurements of ~ ( ( 1 )  (RA = 50) are similar to those he obtained in the wake, but his 
atmospheric data for p(cl), obtained with the same probe, have the same shape as the 
present distributions of ~ ( ( 3 ) .  It is unlikely that the difference between p( i l )  and p ( l 2 )  
or p ( c 3 )  in figure 14 reflects a genuine difference between and the other two vorticity 
components. For isotropic turbulence, one would expect that p(Cl) = p ( c 2 )  = p(C3) ;  
recall that the skewness should be zero while the even-order moments of w, considered 
in 53 are independent of i. It should also be noted that distributions of p ( q )  and 
~ ( u ~ , ~ )  tend to have an exponential appearance (e.g. Jimenez et al. 1993). Accordingly, 
one would expect p ( c , )  to exhibit an exponential behaviour since both u,,]. and w, are 
representative of the small scales. In this sense, the behaviour of ~ ( ( 1 )  in figure 14 
appears to be inconsistent with the expectation. The difference between Fan’s wake 
data for p(cl) and the present data for p(C2) or ~ ( ( 3 )  needs to be investigated further. 

The vorticity flatness factor F,, is plotted as a function of Rn in figure 15. The 
present data appear to extend the trend suggested by the DNS data of Kerr (1985), 
i.e. F,, increases with RA in a manner similar to the increase of F,,, (the solid line 
represents a least-squares fit to the data of Van Atta & Antonia 1980). It is difficult 
to comment on the relative rates of increase with R, of F,, and F,,,, partly because 
of the lack of F,, data at high values of R,, (the atmospheric point of Fan, for 
R) = 2000, is probably questionable in view of the earlier comments; this would also 
apply to the other two measurements by Fan) and also because of the increasing 
uncertainty in the value of F,, when RA increases. While there does not yet seem 
to be a procedure for correcting fourth (or higher)-order moments, it is in principle 
possible to experimentally determine the effect of spatial resolution on F,,, but the 
implementation could be laborious and increasingly difficult with increasing R,. On 
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FIGURE 14. Probability density function of wi. - - -, i = 1, Fan (1991), RJ, = 300; . . ., i = 3, present, 
Rn = 260; -, Gaussian distribution with a variance of 1. 

the basis of the measurements by Mi & Antonia (1996), it is likely that the present 
values of F,, and F,, at RE. = 120 and more especially at Ri, = 190 are underestimated. 
If this were the case, the rate of increase of FUi with Rn is likely to be greater than 
that for F,,,, ; this trend would be consistent with Kerr's (1985) observation that, for 
Rn 5 83, the vorticity flatness factor exponent is the largest of all the fourth-order 
velocity-derivative moment exponents. 

The present corrected Kolmogorov-normalized distribution of 4t,, (Ri = 60) is 
compared in figure 16 with the corresponding DNS data of Kim & Antonia (1994) 
on the centreline (& N 53) of a fully developed channel flow and the measured 
data of Ong & Wallace (1995) in a high Reynolds number (I71 2: 870) turbulent 
boundary layer. The present distribution falls slightly underneath the DNS spectrum 
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R, 
FIGURE 15. Dependence of flatness factors of w, and u1,1 on Rn. i = 1 : 0, DNS (Kerr 1985); A, 
data collected by Fan (1991); 0, inferred from DNS data of Kida & Murakami (1989). i = 2 : 0, 
present wake data. i = 3 : x, present wake data. Ful,l : -, best fit to the data of Van Atta & 
Antonia (1980). 

FIGURE 16. q5& for different flows. -, Present (corrected), Ri = 60; -, DNS, channel flow, Rn = 53; 
- - -, Ong & Wallace (1995), RJ. 2i 870. 

for k ;  2 0.4 but the discrepancy is small, probably within the uncertainty of either the 
measured or the DNS data. The Ong & Wallace spectrum does however fall away 
quite sharply, with respect to the other two distributions, for k;  2 0.1. The authors 
noted that the inadequate spatial resolution of the probe, filtering and noise distorted 
the data for k ;  2 0.1. These data do not therefore invalidate our earlier conclusion 
($5)  that the high-wavenumber part of the spectrum conforms with Kolmogorov 
scaling, independently of R,. In the inertial range, Ong & Wallace’s spectra of mi 
(i  = 1,2,3) conform with local isotropy, a result which extends our earlier conclusion 
($5 )  in connection with local isotropy in the dissipation range. 
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9. Conclusions 
The lateral components of the vorticity fluctuation were measured just beyond the 

end of the intermediate wake region of a circular cylinder. The measurements were 
carried out on the flow centreline at four values of the turbulence Reynolds number 
RA. Particular attention was paid to the high-wavenumber attenuation of the spectrum 
due to the spatial resolution of the probe. A method for correcting the spectra was 
developed and applied to the data. Although the correction relies on isotropy, the 
major contributor to the high-wavenumber part of the lateral vorticity spectrum 
is the streamwise derivative of the lateral velocity fluctuation. Since the spectral 
correction for this latter quantity does not rely on the assumption of local isotropy, 
the correction of the vorticity spectrum is relatively insensitive to this assumption. The 
assumption has in any case been tested with spectra of the lateral velocity fluctuations 
and the shear stress cospectrum. The high-wavenumber region of velocity derivatives 
and vorticity spectra was compared with the appropriate isotropic relations. Overall, 
agreement with local isotropy is satisfactory over a reasonable wavenumber range 
(k;  2 0.2). In particular, there is no evidence to suggest that this result depends on Ri, 
although the range of agreement with isotropy extends to lower wavenumbers when 
RJ, increases. All the spectra and cospectra show departures from isotropy at low 
wavenumbers ; these departures are reflected in the second- and fourth-order moments 
of 0 2  and 0 3 .  In particular, the flatness factors of 0 2  and 0 3  are significantly (30 - 
40%) larger than the expected isotropic value, namely the flatness factor of u1,~. In 
this context, vorticity fluctuations are more intermittent than fluctuations of u1,1, the 
quantity generally used for quantifying the intermittency of the small-scale structure. 

Both spectral and probability density functions of w2 and 0 3  evolve with Ri. For 
the spectra, the major variation occurs at low wavenumbers with little discernible 
change at high wavenumbers. For RA = 60, the p.d.f. of 0 2  or 0 3  closely follows 
a single exponential distribution; this behaviour is replaced by a double exponential 
behaviour as RA increases, the tail of the p.d.f. tending to spread to higher amplitudes. 
The rate of increase with RiL of the vorticity flatness factor appears to be larger than 
that of the ul,l flatness factor. The magnitude of the vorticity flatness factor is larger 
than that of any of the vorticity components. 

At RE. = 260, two-point longitudinal correlations of w3 provide reasonable support 
for a ‘r-4/3’ inertial range. This behaviour is consistent with the ‘r2I3’ inertial-range 
behaviour of velocity and the isotropic Navier-Stokes equations, when the latter 
are written in the form of transport equations for two-point vorticity correlation 
functions. 

The support of ARC is gratefully acknowledged. 

Appendix. Correction to the 0 3  spectrum 
In this Appendix, we provide details for the effect of the spatial resolution on the 

measured spectra of 0 3  and its components. 
The two parallel wires are aligned in the x3-direction and the inclined wires of the 

X-probe are in the (xl,x2)-plane (note, in figure la, x1 is measured from the centre 
of the probe). The inclined wires are assumed to have an effective angle p and a 
spanwise separation Ax3; the separation between the parallel wires is Ax2 and all 
wires have a length 1. Following Wyngaard (1968), the measured velocity fluctuations 
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at SO, the location of the probe centre, can be expressed by 
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2uy = Ula  + U l b  + cot p ( U 2 b  - U2a)' 

2 4  = ~ 2 a  + ~ 2 b  + tanB(u1b - U l a )  , 

(A 1)  

(A 2) 
where the first subscript refers to the velocity fluctuation component; the second 
subscript denotes the wire (e.g. a, b). 

The measured longitudinal derivative uzl can be expressed as 

uil = (uylxo+Axl - uylxo)/Axl , (A 3) 

where Axl = -uAt, u is the local mean velocity and At (= f;l) is the time between 
successive samples in the digital time series. The measured lateral derivative uY2 can 
be expressed as 

(A 4) u;f2 = ( U l c  - Uld)/AX2 . 
Fourier-Stieltjes expressions for the velocity fluctuations can be written : 

bdZ2 (k), (A 6) 

(A 7) 

where i = f l ;  dZ1 and dZ2 are the Fourier-Stieltjes components of u1 and u2, 

respectively; k is a wavenumber vector with a magnitude of k = (k;? + k; + ki)1'2 
while AX; is a separation vector whose magnitude is Axi; A,, Ab and A are given by 

eik .(xo-Ax3/2)~ 
U2b = 

U l c  = 1: &k'(Xo+AX2/2)Adz 1 (k)' 

(A 8) 
sin(k - IJ2)  

A, = 
k * 1,/2 ' 

where I ,  is the wire length vector of the wire a (= a, b, c and d) .  
The true and measured w3 can be expressed as 

+m 
eik .xo /2 d Z  

w3 ' 

where 

and 

dZ,, = ikldZ2 - ik2dZ1 

k * Ax2 
2 

-2Ai sin ~ dZi/Axz . 
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The spectra of 0;” and 0 3  are given by 

4<03 ( k )  = dZ,,(dZcu, ) + / d k ,  

where the dagger denotes the complex conjugate. 
Substitutions of (A 13) and (A 14) into (A 15) and (A 16) yield 

4w3(k) = k?422(k) + ki411(k) - 2klk2412(k), 

where the true cross-spectrum q5ij(k) is assumed to be symmetrical with respect to 
its indices so that 412(k) = 421(k). Similarly, the true and measured derivative 
components of a3 can also be obtained. The ‘true’ spectra are given by (2.8), (2.9) 
and (2.10). The ‘measured’ spectra may be written as follows: 

and 

1 
k - Ax1 - -) 2 + sin F] A b }  411(k) /AxlAx2 

k * Ax3 
2 

k . Ax3 
k . A X 2  {[sin ( k - ~ x ~  + ~ ) - sin ( k )  = 2A tan P sin ___ 

2 
k * Ax3 

k * Ax3 
* Axl - -) 2 + sin 31 2 A , }  $ 1 2 ( k ) / A ~ I A ~ 2  . ( A  21) 
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Using the isotropic form of $ij(k), (2.11), the values of $:,, ( k l ) ,  $&@I), C ~ ~ ~ , ~ , , , ~ ( k i )  
and $;,(kl)  are obtained by numerically integrating (A 19), (A 20), (A21) and (A 18) 
over all values of k2 and k3. 
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